Wi-Fi сигнал станет новым альтернативным источником энергии - «Технологии» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Технологии » Wi-Fi сигнал станет новым альтернативным источником энергии - «Технологии»
Wi-Fi сигнал станет новым альтернативным источником энергии - «Технологии»
Любое передающее Wi-Fi сигнал электронное устройство продуцирует терагерцевые волны – электромагнитные волны с частотой в промежутке между микроволнами и инфракрасным излучением. Они известны под названием «Т-лучи» и вырабатываются также приборами, которые измеряют температуру, а также



Любое передающее Wi-Fi сигнал электронное устройство продуцирует терагерцевые волны – электромагнитные волны с частотой в промежутке между микроволнами и инфракрасным излучением. Они известны под названием «Т-лучи» и вырабатываются также приборами, которые измеряют температуру, а также человеческими телами и самыми разными неодушевленными предметами.


В повседневной жизни терагерцовые волны встречаются практически повсюду, и теоретически их можно задействовать в качестве альтернативного источника энергии, например, для зарядки мобильного телефона. До сих пор энергия этих волн расходовалась впустую, поскольку не имелось технологии для улавливания и преобразования ее в какую-либо пригодную для использования форму.


Ученые из Массачусетского технологического института разработали концепцию устройства, которое, по их заявлению, сможет преобразовать окружающие терагерцевые волны в постоянный ток и запитывать им электронику.


В основе представленной технологии используются особенности квантово-механического или атомарного поведения графена. Исследователи обнаружили, что в комбинации графена с нитридом бора, электроны углерода способны изменять свое движение в общем направлении. По их мнению, чтобы пройти через материал в одном направлении и создать постоянный ток, любые входящие терагерцевые волны должны «переносить» электроны графена, подобно миниатюрным курьерам.


Результат работы ученых был опубликован в журнале Science Advances и сейчас они заняты созданием рабочего прототипа.


Нарушение симметрии графена


В последние годы ученые предлагают разные способы сбора и преобразования окружающей энергии в полезное электричество. Но в основном это делается за счет выпрямителей – девайсов, которые предназначены для конвертации электромагнитных волн переменного тока в постоянный.


Большинство выпрямителей работают с низкочастотными волнами используя электрическую цепь с диодами для генерации электрического поля. Работа этих устройств ограничена определенными частотами, в число которых не входит терагерцовый диапазон.


Чтобы отказаться от внешнего электрического поля и заставить электроны перемещаться в одном направлении на квантовомеханическом уровне и преобразовывать терагерцевые волны в постоянный ток требуется очень чистый, свободный от примесей материал. Обнаружилось, что графен – идеальный кандидат.







Но для этого графен должен был бы нарушить внутреннюю симметрию, или то, что физики называют «инверсией». Обычно электроны в графене воздействуют друг на друга с одинаковой силой, а это означает, что любая поступающая энергия рассеивает их во всех направлениях симметрично.


Ученым удалось найти способ преодолеть инверсию графена и вызвать асимметричный поток электронов в ответ на поступающую энергию. Для этого на графен нанесли слой нитрида бора, напоминающий рисунок сот, состоящих из двух типов атомов - бора и азота. Они обнаружили, что при таком расположении силы между электронами графена были выбиты из равновесия: электроны рядом с бором испытывал одну силу, в то время как электроны рядом с азотом – другую. Общий эффект заключался в том, что физики называют «косым рассеянием», когда облака электронов отклоняют свое движение в одном направлении.


Одно направление


Ученые также обнаружили, что чем сильнее энергия поступающего терагерца, тем больше энергии устройство может преобразовывать в постоянный ток. Это означает, что преобразователь T-лучей должен также каким-то образом концентрировать эти волны перед их попаданием в устройство.


Опираясь на этот вывод, исследователи разработали концепт терагерцового выпрямителя, состоящего из небольшого графенового квадрата, расположенного на слое нитрида бора внутри антенны, которая будет собирать и концентрировать окружающее терагерцовое излучение, усиливая его сигнал достаточно, чтобы преобразовать его в постоянный ток.



«Это очень похоже на солнечную батарею, за исключением другого частотного диапазона, который пригоден для пассивного сбора и преобразования окружающей энергии», - говорит глава исследования, проффесор Фу Линь.



Команда ученых подала патент на новую конструкцию «высокочастотного выпрямления» и теперь работает с физиками-экспериментаторами в MIT над созданием действующего прототипа. По их мнению, в ближайшем будущем терагерцовые выпрямители могут быть использованы, например, для беспроводного питания имплантатов в теле пациента, а также преобразования сигналов Wi-Fi для зарядки бытовой электроники вроде смартфонов и ноутбуков.





Источник: news.mit.edu





{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle

Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика