Найден способ увеличить КПД кремниевого солнечного элемента до 35%, разрушив фундаментальный предел Шокли-Квиссера - «Новости Электроники» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Найден способ увеличить КПД кремниевого солнечного элемента до 35%, разрушив фундаментальный предел Шокли-Квиссера - «Новости Электроники»
Найден способ увеличить КПД кремниевого солнечного элемента до 35%, разрушив фундаментальный предел Шокли-Квиссера - «Новости Электроники»
Мир неуклонно переходит на «зеленую» энергетику, и производители солнечных батарей беспрерывно стремятся к достижению выработки максимально возможного количества электричества в своих устройствах. Но путь этот не бесконечен и есть определенные физические ограничениями в их эффективности. Британская



Мир неуклонно переходит на «зеленую» энергетику, и производители солнечных батарей беспрерывно стремятся к достижению выработки максимально возможного количества электричества в своих устройствах. Но путь этот не бесконечен и есть определенные физические ограничениями в их эффективности. Британская компания Cambridge Photon Technology полагает, что нашла способ значительно увеличить КПД, который способен предоставить кремний в фотоэлементах.


Все солнечные элементы работают примерно одинаково: свет падает на устройство и возбуждает электроны в ячейке, вызывая образование электрического тока. Предпочтительным фотоэлектрическим материалом является кремний, который может поглощать большую часть падающего солнечного света и преобразовывать его в электричество. Но лучше всего этот материал работает с фотонами в красной и ближней инфракрасной части спектра. Фотоны с более длинной длиной волны и меньшей энергией — дальний инфракрасный диапазон, микроволны и радиоволны — не дают достаточно энергии для протекания тока. Зеленые и синие фотоны с более короткой длиной волны содержат больше энергии, чем может конвертировать кремний, а избыточная энергия теряется в виде тепла.


Cambridge Photon Technology заявляет, что нашла способ остановить эти потери за счет преобразования фотонов с более высокой энергией в фотоны с более низкой энергией, которые может использовать солнечный элемент.



«Мы пытаемся решить эту проблему, как улучшить производительность фотоэлемента и значительно снизить затраты, не отказываясь от устоявшейся кремниевой технологии», — говорит Дэвид Уилсон, глава отдела развития бизнеса компании.



Максимальная эффективность определяется фундаментальной формулой Шокли-Квиссера. Все фотоэлектрические материалы обладают свойством, называемым шириной запрещенной зоны, которое определяет, сколько энергии может быть передано отдельным электронам (для кремния это 1,1 электрон-вольт). Это соответствует фотонам в ближней инфракрасной части спектра. Фотоны с более высокой энергией, чем эта ширина запрещенной зоны — весь спектр видимого света — могут генерировать электроны, но любая дополнительная энергия фотона за пределами ширины запрещенной зоны материала высвобождается в виде тепла. Из-за этого ограничения обычный солнечный элемент, работающий в идеальных условиях, может преобразовать в электричество в лучшем случае 29% солнечной энергии.





Новый метод, основанный на явлении, называемом делением синглетного экситона, был разработан физиком Акшаем Рао и его командой из Кембриджского университета. Рао также является главным научным сотрудником стартапа. Когда свет попадает на фотоэлектрический материал, он создает экситон, в котором отрицательно заряженный электрон и положительно заряженная дырка связаны электростатическим зарядом. Но если материал представляет собой органический полимерный полупроводник, фотон может создать не один, а два менее энергетических экситона, и оба они быть преобразованы в электрический ток.



«Вы сохраняете общую энергию, которая входит и выходит, но вы заставляете кремний получать более высокий поток фотонов в той части спектра, которую он хорошо преобразует в электричество», — говорит Уилсон.



Инженеры компании разработали пленочный фотоэлектронный умножитель, состоящий из слоя органического полимера под названием пентацен, усеянного квантовыми точками селенида свинца — небольшими светоизлучающими комками неорганического материала. Полимер поглощает синие и зеленые фотоны и превращает их в пары экситонов. Эти экситоны перетекают в квантовые точки, которые поглощают их и испускают фотоны красного или инфракрасного излучения с меньшей энергией. Когда пленку помещают поверх кремниевого солнечного элемента, свет от квантовых точек падает на кремний. Вместе с этим красные и инфракрасные волны непосредственно от Солнца проходят через полимерную пленку и попадают на кремний, как обычно. В результате на кремний попадает больше пригодных для использования фотонов, увеличивая производство электрического тока.



Найден способ увеличить КПД кремниевого солнечного элемента до 35%, разрушив фундаментальный предел Шокли-Квиссера - «Новости Электроники»

Ученые подсчитали, что этот метод двойного экситона теоретически может увеличить потенциальную эффективность преобразования солнечных элементов до 35%. По словам Уилсона, компания еще не приблизилась к этому уровню, но к концу 2022 года она надеется создать прототип, который преобразует около 31% солнечного света в электричество.


Эффективность фотоэлектрических систем могут повысить и другие решения. Тандемные солнечные элементы, например, дополнительно используют перовскиты, которые могут улавливать фотоны с более короткой длиной волны. В соединении с кремниевыми элементами эти гибриные устройства получают увеличенный КПД. Но их проблема заключается в сложности заставить два устройства работать вместе, производя разные токи. Создание солнечных элементов из другого материала также требует дополнительного производственного процесса и нового оборудования, что может привести к росту затрат.



«Весь наш подход заключался в том, чтобы избежать этих проблем и сделать простой, нетоксичный материал без электрических соединений, что очень мало усложняет существующую конструкцию», — говорит Уилсон.



Идея Cambridge Photon Technology кажется осуществимой, говорит Кристофер Бардин, химик из Калифорнийского университета в Риверсайде, не связанный с компанией. По его словам, то многообещающая технология, которая обеспечивает простую альтернативу тандемным ячейкам.


Пленочный электрофотонный умножитель компании может легко вписаться в существующие производственные процессы, говорит Уилсон. Готовую пленку можно продавать производителям солнечных панелей для размещения на их фотоэлектрических модулях. Более простой подход может состоять в том, чтобы продавать готовое решение компаниям, которые производят либо слой винилацетата, покрывающий кремний, либо стекло, покрывающие солнечные элементы. Затем производители панелей могут собирать уже обработанные компоненты в готовое устройство. Каким бы ни был подход, Уилсон надеется, что продукт будет готов к выпуску на рынок примерно через три года.





В Cambridge Photon Technology работает около дюжины человек, и компания привлекла 1,4 миллиона долларов США в виде акционерного капитала. Он также имеет ряд исследовательских грантов и доступ к исследователям и объектам Кембриджского университета для дальнейшего развития технологии. Она получила лицензию на четыре ключевых патента университета.


Хотя компания создала действующие прототипы пленки и квантовых точек, она не собрала все части в работающий солнечный элемент с повышенной эффективностью.



«Действительно ясно, что в таких фотоэлементах существует довольно острая необходимость, - говорит он. - И эта технология будет иметь большое значение для удовлетворения этой потребности».



Источник: nature.com





{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle

Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика