Ученые разработали новый метод превращения углекислого газа в органические вещества - «Технологии» » Новости Электроники.
Интернет портал Mobzilla.su предлагает огромный выбор новостей с доставкой на дом. » Новости Электроники » Технологии » Ученые разработали новый метод превращения углекислого газа в органические вещества - «Технологии»
Ученые разработали новый метод превращения углекислого газа в органические вещества - «Технологии»
Углекислый газ (CO2) может стать важнейшим сырьем углерода для будущей зеленой экономики. Это требует разработки эффективных технологий для его превращения в мультикарбоновые соединения, которые станут основой для множества биотехнических продуктов, начиная от биотоплива и заканчивая лекарствами.



Углекислый газ (CO2) может стать важнейшим сырьем углерода для будущей зеленой экономики. Это требует разработки эффективных технологий для его превращения в мультикарбоновые соединения, которые станут основой для множества биотехнических продуктов, начиная от биотоплива и заканчивая лекарствами.


Несмотря на огромное разнообразие организмов, способных вырабатывать ферменты для превращения диоксида углерода в органические соединения, до сих пор еще никому не удавалось использовать эту возможность для преобразования СО2 в биотопливо или возобновляемые источники для получения ценных химических веществ. Слишком высокая концентрация углекислого газа в атмосфере – это серьезная проблема, но некоторые ученые рассматривают ее как возможность, пишет Geektimes.



«Биологическая фиксация углерода требует нескольких ферментов для превращения СО2 в биомассу. Хотя этот путь развивался в растениях, водорослях и микроорганизмах в течение миллиардов лет, многие реакции и ферменты могут помочь в производстве необходимых химических продуктов, а не биомассы», - сообщается в научной работе, опубликованной в журнале Science.



Команда исследователей из Института земной микробиологии Общества Макса Планка в Марбурге, Германия, разработала для растений новый высокоэффективный метод переработки СО2. Он основывается на новом ферменте для связывания углерода, благодаря которому этот процесс может гипотетически идти в 2-3 раза быстрее.


Растения и водоросли вполне неплохо справляются с тем, чтобы уменьшить количество углекислого газа в атмосфере. Ежегодно они потребляют около 350 миллиардов тонн СО2 во всем мире. Почти все растения делают это с помощью одного и того же химического процесса, ряда химических реакций, называемых циклом Кальвина.



Цикл Кальвина представляет собой набор молекулярных превращений, в процессе которых три простых атома молекулы СО2 медленно преобразуются в глюкозу, сложный сахар. Этот способ достаточно хорошо отлажен эволюцией, но ученые нашли способ его улучшить.


Успешное завершение цикла Кальвина зависит от конкретного молекулярного инструмента – рибулозобисфосфаткарбоксилаза (RuBisCO) – фермента, который захватывает СО2 из атмосферы и формирует крупную молекулу, чтобы начать превращение. Проблема в том, что RuBisCO делает это относительно медленно. Кроме того, каждая пятая попытка RuBisCO зафиксировать CO2 приводит потерям углерода из цикла Кальвина и снижает эффективность фотосинтеза.




Биохимики во главе с Тобиасом Эрбом разработали в пробирке цикл поглощения углерода, во многом схожий с циклом Кальвина. Главное отличие нового способа заключается в том, что в нем используются более быстрый и эффективный молекулярный инструмент – фермент ECR, который выполняет ту же работу, что и RuBisCO, только, примерно, в 9 раз быстрее. Эрб назвал этот процесс циклом CETCH. Помимо фермента ECR, ученые путем секвенирования и синтеза вывели еще 16 катализаторов из 9 различных организмов для CETCH цикла.


Цикл CETCH превращает переносимый по воздуху СО2 в глиоксилат за 11 шагов. На каждом этапе требуется фермент, трансформирующий молекулы. Каждый из таких ферментов был тщательно отобран из 40 тысяч известных катализаторов. Некоторые из них обнаружились в организме человека и кишечных бактериях, другие взяли из растений и микробов, обитающих в Мировом океане.


Эрб и его коллеги проверили CETCH цикл в своей лаборатории. Они соединили все добытые катализаторы с некоторым количеством химического топлива и подсчитали, сколько углекислого газа было изъято из воздуха. Они обнаружили, что их цикл на 25% эффективнее, чем цикл Кальвина в растениях и водорослях. CETCH преобразует диоксид углерода в органические молекулы со скоростью 5 нмоль СО2 в минуту на миллиграмм белка.



Ободренный успешным восстановлением синтетической ферментативной сети в пробирке, которая, к тому же, может конкурировать с природными циклами, Эрб открывает сразу несколько дверей для использования технологии CETCH. Если ввести синтетические ферменты в живой организм, цикл CETCH поддержит естественный фотосинтез. В конце концов, он же может послужить толчком разработки самодостаточного, полностью синтетического углеродного обмена веществ в бактериальных и водорослевых системах.


Эрб отмечает, что на этом этапе очень трудно спрогнозировать, насколько быстрым будет синтезированный CETCH по сравнению с циклом Кальвина, который работает в живых организмах. Но поскольку он проходит меньшее количество этапов и его ферменты быстрее, ученые ожидают ускорения в два или три раза. В конечном итоге он может оказаться немного медленнее, чем цикл Кальвина. Ученые просто не знают этого наверняка, пока.




Хотя глиоксилат, который получается в ходе цикла CETCH во многом бесполезен сам по себе, его можно легко преобразовать в другое химическое вещество, пригодное для производства биотоплива или антибиотиков.


Ученые надеются, что однажды цикл CETCH можно будет внедрить в живой организм с помощью методов генной инженерии. Однако это весьма непростая задача, для решения которой необходимо провести множество исследований. Сейчас команда Эрба не имеет ни малейшего представления о том, что произойдет, если их цикл разместить внутри системы живой клетки.



«Попробуйте вообразить, будто ученым удалось создать что-то вроде искусственных листьев или любую другую гибридную систему, в которой фотоэлектрические солнечные батареи могут обеспечить энергией водоросли и бактерии, живущие под ними. Тогда, используя цикл CETCH, они смогут поглощать диоксид углерода и вырабатывать полезные химические вещества» – говорит Тобиас Эрб.



Сейчас в основе всей химической промышленности лежит использование ископаемого топлива. Пластмассы и текстиль, техника и антибиотики – все это производится с огромным количеством выбросов углекислого газа. Вместо того, чтобы обременять планету новыми выбросами, химическое производство могло бы активно бороться с изменением климата, создавая полезные продукты из CO2.








{full-story limit="10000"}
Ctrl
Enter
Заметили ошЫбку?
Выделите текст и нажмите Ctrl+Enter
Мы в
Комментарии
Минимальная длина комментария - 50 знаков. комментарии модерируются
Комментариев еще нет. Вы можете стать первым!
Комментарии для сайта Cackle

Смотрите также
интересные публикации

      
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика